Polynomial differential systems having a given Darbouxian first integral*1

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial differential systems having a given Darbouxian first integral ✩

The Darbouxian theory of integrability allows to determine when a polynomial differential system in C2 has a first integral of the kind f λ1 1 · · ·f λp p exp(g/h) where fi , g and h are polynomials in C[x, y], and λi ∈ C for i = 1, . . . , p. The functions of this form are called Darbouxian functions. Here, we solve the inverse problem, i.e. we characterize the polynomial vector fields in C2 h...

متن کامل

Polynomial First Integrals of Polynomial Differential Systems

In this paper we shall primarily study polynomial integrability of the differential system ẋ = −y + Pn(x, y), ẏ = x + Qn(x, y), n = 2, 3, where Pn and Qn are homogeneous polynomials of degree n. By taking various yet very elementary ways, we not only straightforwardly find the necessary and sufficient integrability conditions but also explicitly present the corresponding polynomial first integr...

متن کامل

Planar polynomial vector fields having a polynomial first integral can be obtained from linear systems

We consider in this work planar polynomial differential systems having a polynomial first integral. We prove that these systems can be obtained from a linear system through a polynomial change of variables.

متن کامل

Liouvillian First Integrals for Generalized Liénard Polynomial Differential Systems

We study the Liouvillian first integrals for the generalized Liénard polynomial differential systems of the form x′ = y, y′ = −g(x) − f(x)y, where g(x) and f(x) are arbitrary polynomials such that 2 ≤ deg g ≤ deg f .

متن کامل

Global Phase Portraits of Kukles Polynomial Differential Systems with Homogenous Polynomial Nonlinearities of Degree 5 Having a Center

We provide the 22 different global phase portraits in the Poincaré disk of all centers of the so called Kukles polynomial differential systems of the form ẋ = −y, ẏ = x + Q5(x, y), where Q5 is a real homogeneous polynomial of degree 5 defined in R.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin des Sciences Math�matiques

سال: 2004

ISSN: 0007-4497

DOI: 10.1016/s0007-4497(04)00051-x